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Abstract

In this note we consider Proposition 13 of [BBLM14] that yields
a sufficient criterion for the existence of a joint distribution of two
marginals with given support. We argue that the proof presented in
Appendix A is flawed and give an alternative argumentation for an
instance of the claim. However, we have no counterexample for (a
slightly modified) Proposition 13.

1 Overview

Before we recall Proposition 13 in [BBLM14] let us first introduce the fol-
lowing notations: given a measurable space X, we denote the set of all
probability measures on X by Prob[X]. Let X and Y be measurable spaces
and f : X → Y be a measurable function. The pushforward of f is given by
the function f] : Prob[X]→ Prob[Y ] defined as follows: for all µ ∈ Prob[X]
and measurable F ⊆ Y let f](µ)(F ) = µ(f−1(F )). Using these notations, we
are ready to state the aforementioned proposition as follows:

Claim 1. Let Z, X and Y be measurable spaces, µ ∈ Prob[X] and ν ∈
Prob[Y ], and r1 : Z → X and r2 : Z → Y be surjective and measurable
functions. Assume the sigma-algebra on Z coincides with the initial sigma-
algebra on Z for {r1, r2}. If for all measurable sets E ⊆ X and F ⊆ Y ,

r−11 (E) = r−12 (F ) implies µ(E) = ν(F ),

then there exists µ ∧ ν ∈ Prob[Z] such that

(r1)](µ ∧ ν) = µ and (r2)](µ ∧ ν) = ν.

Simple counterexample. It is easy to produce counterexamples for Claim 1
when imposing no restrictions on the involved measurable spaces Z, X, and Y .
Indeed, consider the discrete spaces Z, X and Y defined by X = Y = {0, 1}
and Z = (X × Y ) \ {〈0, 1〉}. Set µ = Dirac[0] and ν = Dirac[1] and let r1
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and r2 be natural projections, i.e., r1 : Z → X, r1(x, y) = x and r2 : Z → Y ,
r2(x, y) = y. Given E ⊆ X and F ⊆ Y with r−11 (E) = r−12 (F ), one has
E = F = ∅ or E = F = {0, 1} and therefore, µ(E) = ν(F ). However, there
is no µ ∧ ν ∈ Prob[Z] where (r1)](µ ∧ ν) = µ and (r2)](µ ∧ ν) = ν relying on
the fact that 〈0, 1〉 /∈ Z.
Claim for quasi-equivalence relations. Let us consider an instance of
Claim 1 where Z = R for some quasi-equivalence relation R on X × Y . Here,
R ⊆ X × Y is called a quasi-equivalence relation (on X × Y ) if the following
two statements hold:

• R is lr-total (on X × Y ): for all x ∈ X there is y ∈ Y where 〈x, y〉 ∈ R
and vice versa, i.e., for all y ∈ Y there is x ∈ X where 〈x, y〉 ∈ R.

• R is z-transitive: for all 〈x, y〉, 〈x′, y〉, 〈x′, y′〉 ∈ R one has 〈x, y′〉 ∈ R.

Quasi-equivalence relations generalize the idea of equivalence relations: In
case X = Y every equivalence relation on X constitutes a quasi-equivalence
relation on X × Y .

First of all, the conditions for a quasi-equivalence relations are rather
natural in the context of bisimulations for probabilistic systems (cf. Lemma 11
in [BBLM14]). Besides this, in the presented setting using quasi-equivalences,
one cannot expect a simple counterexample for Claim 1 as presented above.
We illustrate the crux and suppose an quasi-equivalence relation R on X ×Y .
Define r1 : R → X, r1(x, y) = x and r2 : R → Y , r2(x, y) = y. For every
x ∈ X and y ∈ Y introduce Fx = {y′ ∈ Y ; 〈x, y′〉 ∈ R} and Ey = {x′ ∈
X ; 〈x′, y〉 ∈ R}, respectively. Given x ∈ X and y ∈ Y , we have

〈x, y〉 ∈ R implies r−11 (Ey) = r−12 (Fx).

Therefore, apart from trivial cases, the sets {〈∅,∅〉, 〈X,Y 〉} and {〈E,F 〉 ∈
2X×2Y ; r−11 (E) = r−12 (F )} do not coincide for the quasi-equivalence relation
R. However, this is the key point for our simple counterexample presented
before since µ(∅) = ν(∅) and µ(X) = ν(Y ) for all probability measures
µ ∈ Prob[X] and ν ∈ Prob[Y ].

Outline. In Section 2 we investigate the proof of Proposition 13 of [BBLM14]
given in Appendix A. Section 3 presents an instance of Claim 1 with quasi-
equivalences between Polish spaces, which we prove to be correct using results
from descriptive set theory.

2 Review of a proof given in [BBLM14]

We illustrate a flaw in the proof of the proposition under consideration
presented in Appendix A. Unfortunately, the function µ ∧ ν defined as in the
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Figure 1: Equivalence relation R on [0, 1]

given proof is generally not well-defined on G-sets. Let us give a concrete
example where we assume the notations as in [BBLM14].

We consider the case where X = Y = [0, 1] and µ = ν = Leb with Leb
being the Lebesgue measure on [0, 1]. Let R be the equivalence relation on
[0, 1] depicted in Figure 1, i.e.,

R = {〈x, y〉 ∈ [0, 1]× [0, 1] ; x = y}
∪ {〈1/6, 1/3〉, 〈1/3, 1/6〉, 〈2/3, 5/6〉, 〈5/6, 2/3〉}.

Let r1 : R → [0, 1] and r2 : R → [0, 1] be the natural projections, hence,
r1(x, y) = x and r2(x, y) = y for all x ∈ X and y ∈ Y . Obviously, r1 and r2
are surjective. Using that R is an equivalence relation on [0, 1] we obtain the
following statement: for every E,F ⊆ [0, 1] where r−11 (E) = r−12 (F ) one has
E = F and thus, provided E and F are Borel in [0, 1], it holds µ(E) = ν(E).
Putting things together the assumptions of Proposition 13 are fulfilled.

In what follows we illustrate why the function µ ∧ ν as introduced in
Appendix A is not well-defined in general. To that end let

M1 = [0, 2/3] and M2 = [1/3, 1]

and define M = r−11 (M1), M ′ = r−11 (M1) ∩ r−12 (M2), and M ′′ = r−11 (M1) ∩
r−12 ([0, 1] \M2). The introduced sets M , M ′, and M ′′ are G-sets in the sense
of [BBLM14]. Based on equation (8) in [BBLM14] we justify

µ ∧ ν(M) = 2/3, µ ∧ ν(M ′) = 0, and µ ∧ ν(M ′′) = 1/3.

Let us consider equation (8) carefully. Relying on the fact that for all Borel
sets E,F ⊆ [0, 1] one has µ(E) = ν(F ) if r−11 (E) = r−12 (F ), equation (8)
can be simplified as follows: given Borel sets E,F ⊆ [0, 1], we abbreviate
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G = r−11 (E) ∩ r−12 (F ) and obtain

µ ∧ ν(G) =


µ(Ẽ), if there is Ẽ ⊆ [0, 1] Borel where G = r−11 (Ẽ)

ν(F̃ ), if there is F̃ ⊆ [0, 1] Borel where G = r−12 (F̃ )

0, otherwise
.

It directly follows µ ∧ ν(M) = µ ∧ ν(r−11 ([0, 2/3])) = µ([0, 2/3]) = 2/3.
Considering the set M ′′, we have M ′′ = r−12 ([0, 1/3)) and also, µ ∧ ν(M ′′) =
µ ∧ ν(r−12 ([0, 1/3))) = ν([0, 1/3)) = 1/3. It remains to argue µ ∧ ν(M ′) = 0.
Note that

M ′ = {〈x, y〉 ∈ [0, 1]× [0, 1] ; x = y and x ∈ [1/3, 2/3]}
∪ {〈1/6, 1/3〉, 〈2/3, 5/6〉}.

Assume that there is a set Ẽ ⊆ [0, 1] where M ′ = r−11 (Ẽ). Since 〈1/3, 1/3〉 ∈
M ′, it follows 1/3 ∈ Ẽ. As 〈1/3, 1/6〉 ∈ r−11 (Ẽ), we have 〈1/3, 1/6〉 ∈ M ′.
Contradiction. Suppose there exists F̃ ⊆ [0, 1] where M ′ = r−12 (F̃ ). Using
〈2/3, 5/6〉 ∈ M ′, we obtain 5/6 ∈ F̃ . Since 〈5/6, 5/6〉 ∈ r−12 (F̃ ), it hence
holds 〈5/6, 5/6〉 ∈M ′. Contradiction. We conclude µ ∧ ν(M ′) = 0.

We derive a contradiction using equation (9) in [BBLM14]: since M is
the union of the disjoint sets M ′ and M ′′, the mentioned equation yields

µ ∧ ν(M) = µ ∧ ν(M ′) + µ ∧ ν(M ′′) = 0 + 1/3 = 1/3.

Putting things together we thus have µ ∧ ν(M) = 2/3 (using equation (8))
and µ ∧ ν(M) = 1/3 (using equation (9)). Contradiction. We conclude that
µ ∧ ν as introduced in Appendix A is not well-defined.

However, our example does not contradict Proposition 13 since there
indeed exists a probability measure ϕ on R such that (r1)](ϕ) = µ and
(r2)](ϕ) = ν. To see this define f : [0, 1] → R, f(x) = 〈x, x〉. Remind, R
is equipped with the initial sigma-algebra for {r1, r2}. This sigma-algebra
coincides with the trace sigma-algebra from [0, 1] × [0, 1] using that R is
Borel in [0, 1]× [0, 1]. We conclude that f is measurable and can thus safely
define ϕ = f](Leb). It is easy to see that ϕ satisfies the required properties,
i.e., ϕ(R) = 1, ϕ(E × [0, 1]) = Leb(E) for all Borel sets E ⊆ [0, 1], and
ϕ([0, 1]× F ) = Leb(F ) for all Borel sets F ⊆ [0, 1].

3 Thoughts towards a proof

We give an alternative formulation of Claim 1 with quasi-equivalences over
Polish spaces first. After that we present a proof for an instance of the
statement where, among others, the involved relation is supposed to be
countably separated. The section ends with some concluding remarks.
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Restatement of the claim. As before let X and Y be sets, µ ∈ Prob[X]
and ν ∈ Prob[Y ], and suppose a measurable set R ⊆ X × Y . Define
r1 : R → X, r1(x, y) = x and r2 : R → Y , r2(x, y) = y. For all E ⊆ X and
Y ⊆ F we have

r−11 (E) = r−12 (F ) iff (E,F ) is R-stable.

Here, the pair (E,F ) is R-stable if R ∩ (E × Y ) = R ∩ (X × F ). We denote
µRstb ν if µ(E) = ν(F ) for all measurable sets E ⊆ X and F ⊆ Y where
(E,F ) is R-stable.

A weight function for (µ,R, ν) is a probability measure W on X×Y such
that W (R) = 1 and W is a coupling of (µ, ν), i.e., for all measurable sets
E ⊆ X andF ⊆ Y ,

W (E × Y ) = µ(E) and W (X × F ) = ν(F ).

We write µRwgt ν if there exists a weight function for (µ,R, ν). Putting
things together we can rewrite an instance of Claim 1 as follows:

Claim 2. Let X and Y be measurable spaces and R be a quasi-equivalence
in X × Y . For all µ ∈ Prob[X] and ν ∈ Prob[Y ] we have

µRstb ν implies µRwgt ν.

Given the notations of Claim 2 it is easy to see that the reverse implication
holds, i.e., µRwgt ν implies µRstb ν. Indeed, given a weight function W for
(µ,R, ν), then for all measurable sets E ⊆ X and F ⊆ Y one has the following
statement using that W (R) = 1 and W is a coupling of (µ, ν): If (E,F ) is
R-stable, then R ∩ (E × Y ) = R ∩ (X × F ) and therefore

µ(E) =W (E × Y ) =W (X × F ) = ν(F ).

Countably-separated relations. We consider the instance of Claim 2
where X and Y are supposed to be Polish spaces and R ⊆ X×Y is countably
separated, i.e., there exists a Polish space Z and Borel functions g1 : X → Z
as well as g2 : Y → Z such that

R = {〈x, y〉 ∈ X × Y ; g1(x) = g2(y)}.

Given a countably-separated relation R ⊆ X × Y , then R is Borel in X × Y .
From the literature the following statement is known:

Theorem 3 (Proposition A.7 in [Lov12a, Lov12b]). Let X and Y be Polish
spaces and R be a countably-separated relation in X×Y . For all µ ∈ Prob[X]
and ν ∈ Prob[Y ] one has the following equivalence,

µRstb ν iff µRwgt ν.
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In the paper [GBK16a] the authors present a sufficient criterion for a
relation between Polish spaces to be countably separated. For the sake of
completeness let us recall the theorem and its proof. After that we present
two important corollaries.

Theorem 4 (Theorem 32 in [GBK16b]). Let X and Y be Polish spaces and
R be a quasi-equivalence relation on X×Y . Assume that R is closed in X×Y
and there are Borel functions f1 : X → Y and f2 : Y → X where xR f1(x)
and f2(y)Ry for all x ∈ X and y ∈ Y . Then, R is countably separated.

Proof. Define the relation R̂ ⊆ R×R by

R̂ = {〈〈x1, y1〉, 〈x2, y2〉〉 ∈ R×R ; x1Ry2}.

We argue that R̂ is an equivalence relation on R. Reflexivity is obvious.
Symmetry can be seen as follows: if 〈x1, y1〉 R̂ 〈x2, y2〉, then x1Ry1, x1Ry2,
and x2Ry2 and as R is z-transitive we therefore obtain x2Ry1 and also
〈x2, y2〉 R̂ 〈x1, y1〉. We justify transitivity of R̂ and suppose 〈x1, y1〉 R̂ 〈x2, y2〉
and 〈x2, y2〉 R̂ 〈x3, y3〉. Since R̂ is symmetric we obtain 〈x3, y3〉 R̂ 〈x2, y2〉 and
thus x1Ry2, x3Ry2, and x3Ry3. The z-transitivity of R yields x1Ry3 and
hence 〈x1, y1〉 R̂ 〈x3, y3〉. Finally, R̂ is an equivalence relation in R.

Moreover, R̂ is closed in R × R that can be seen as follows: define the
continuous function h : (X×Y )×(X×Y )→ X×Y , h(x1, y1, x2, y2) = 〈x1, y2〉.
Using that R is closed in X×Y , the set h−1(R) is closed in (X×Y )×(X×Y )
and thus R̂ = h−1(R) ∩ (R×R) is closed in R×R.

We are in the situation of Proposition 5.1.11 in [Sri08] (in the given
reference the notion of countably-separated relations slightly differs from the
one given here). There hence exist a Polish space Z and a Borel function
ĝ : R→ Z such that

R̂ = {〈r1, r2〉 ∈ R×R ; ĝ(r1) = ĝ(r2)}.

Let µ ∈ Prob[X] and ν ∈ Prob[Y ]. Let f1 : X → Y and f2 : Y → X be as
in the formulation of the theorem, i.e., xR f1(x) and f2(y)Ry for all x ∈ X
and y ∈ Y . Define the Borel functions g1 : X → [0, 1], g1(x) = ĝ(x, f1(x))
and g2 : Y → [0, 1], g2(y) = ĝ(f2(y), y). Define the relation R̃ ⊆ X × Y by

R̃ = {〈x, y〉 ∈ X × Y ; g1(x) = g2(y)}.

Obviously, the relation R̃ is countably separated. It remains to argue
R = R̃. For that purpose let us observe the following statement first. For all
x1Ry1 and x2Ry2,

x1 = x2 or y1 = y2 implies ĝ(x1, y1) = ĝ(x2, y2).

Indeed, given x1Ry1 and x2Ry2 such that x1 = x2 or y1 = y2, then x1Ry2
and also 〈x1, y1〉 R̂ 〈x2, y2〉, which yields ĝ(x1, y1) = ĝ(x2, y2).
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In what follows we finally conclude R = R̃. To this end let x ∈ X and
y ∈ Y . In case xR y we obtain

g1(x) = ĝ(x, f1(x)) = ĝ(x, y) = ĝ(f2(y), y) = g2(y)

and hence x R̃ y. Conversely, if g1(x) = g2(y), then

ĝ(x, f1(x)) = g1(x) = g2(y) = ĝ(f2(y), y),

also 〈x, f1(x)〉 R̂ 〈f2(y), y〉, and thus xR y.

Based on a measurable selection theorem from the literature (cf. The-
orem 6.9.6 in [Bog07]) we obtain the following corollary.

Corollary 5. Let X and Y be sigma-compact Polish spaces and R be an
quasi-equivalence relation on X × Y . Assume R is closed in X × Y . Then
for all µ ∈ Prob[X] and ν ∈ Prob[Y ] one has the following statement,

µRstb ν iff µRwgt ν.

Proof. Relying on Theorems 3 and 4 we have to show that there are Borel
functions f1 : X → Y and f2 : Y → X such that xR f1(x) and f2(y)Ry for
all x ∈ X and y ∈ Y . However, this is a consequence of Theorem 6.9.6
in [Bog07]. Indeed, we can apply this theorem for the following reasons:
since R is closed in X × Y , the set {y ∈ Y ; xR y} is closed in Y and thus,
using that Y is sigma-compact, {y ∈ Y ; xR y} is sigma-compact in Y for
all x ∈ X. Moreover, {y ∈ Y ; xR y} is not empty for all x ∈ X as every
quasi-equivalence relation is lr-total. The same arguments apply for the set
{x ∈ X ; xR y} where y ∈ Y .

Every locally-compact Polish space is trivially sigma-compact because Polish
spaces have a countable and dense subset. Thus, Corollary 5 covers an
important class of topological spaces in the context of probabilistic models
as, e.g., Rk is a locally-compact Polish space for every k ∈ N>0.

Essentially, the next corollary corresponds to Corollary 5 in the context of
equivalence relations instead of quasi-equivalence relations (for the following,
reflexivity is crucial).

Corollary 6. Let X be a Polish space and R be an equivalence relation on
X. If R is closed in X ×X, then for all µ ∈ Prob[X] and ν ∈ Prob[Y ],

µRstb ν iff µRwgt ν.

Proof. Define the Borel function f : X → X, f(x) = x. Since R is reflexive
one has xR f(x) and f(x)Rx for all x ∈ X. The claim thus follows from
Theorems 3 and 4.
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4 Counterexample

We adapt an example presented in [Swa96] to obtain a counterexample for
Claim 2. For this purpose let us first recall the result from [Swa96].

Proposition 7 ([Swa96]). There are measurable spaces X0, X1, and X2 as
well as probability measures µ01 ∈ Prob[X0 ×X1] and µ02 ∈ Prob[X0 ×X2]
such that the following two statements hold:

1. (ρ0)](µ01) = (ρ0)](µ02).

2. There is no probability measure µ012 ∈ Prob[X0 × X1 × X2] where
(ρ01)](µ012) = µ01 and (ρ02)](µ012) = µ02.

Here, ρ0, ρ01, and ρ02 denote the natural projections, i.e., ρ0(x0, x1, x2) = x1,
ρ01(x0, x1, x2) = 〈x0, x1〉, and ρ02(x0, x1, x2) = 〈x0, x2〉 for all x0 ∈ X0,
x1 ∈ X1, and x2 ∈ X2

Note, Proposition 7 shows that the so-called clueing lemma presented in
[Vil09] cannot be generalized to arbitrary measurable spaces.

We construct the counterexample for Claim 2. Let X0, X1, and X2 as
well as µ01 and µ02 be as in the proposition. Moreover, let ρ0, ρ01, and ρ02
be as before. Define

X = X0 ×X1, Y = X0 ×X2, µ = µ01, and ν = µ02

as well as

R = {〈〈x0, x1〉, 〈y0, y2〉〉 ∈ X × Y ; x0 = y0}.

Let us first observe that R is an quasi-equivalence in X × Y . In what follows
we show 〈µ, ν〉 ∈ Rstb, but 〈µ, ν〉 /∈ Rwgt.

The claim 〈µ, ν〉 ∈ Rstb follows from Proposition 7 (1) and the fact that
for all measurable sets E ⊆ X and F ⊆ Y the following statements are
equivalent:

• (E,F ) is R-stable.

• There is a measurable set M0 ⊆ X0 such that E = M0 × X1 and
F =M0 ×X2.

This equivalence can be seen as follows. Obviously, for every measurable set
M0 ⊆ X0 it holds that (M0 ×X1,M0 ×X2) is R-stable. This justifies one
implication. To see the reverse direction, assume that (E,F ) is R-stable and
define

ME = {x0 ∈ X0 ; 〈x0, x1〉 ∈ E for some x1 ∈ X1},
MF = {x0 ∈ X0 ; 〈x0, x2〉 ∈ F for some x2 ∈ X2}.
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Relying on the assumption that (E,F ) is R-stable, we obtain ME =MF as
well as E =ME ×X1 and F =MF ×X2. Since E and F are measurable in
X and Y , respectively, we have that ME is measurable in X0.

It remains to show 〈µ, ν〉 /∈ Rwgt. Towards a contradiciton assume there
is a weight function W for (µ,R, ν). Define f : X × Y → X0 ×X1 ×X2,

f(x0, x1, y0, y1) = 〈x0, x1, y1〉.

Trivally, f is measurable and hence we can safely define

µ012 = f](W ).

It follows (ρ01)](µ012) = µ01 and (ρ02)](µ012) = µ02. However, this contradicts
Proposition 7 (2). We conclude that there is no weight function for (µ,R, ν).
Putting things togehter, Claim 2 does not hold for arbitrary measurable
spaces.

Concluding remarks. Section 4 shows that Polish spaces are an apropriate
assumption for Claim 2. However, in the setting of Polish spaces it would
be interesting whether one can go beyond countably-separated relations (cf.
Section 3).
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